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We consider the two- and three-dimensional problems of motion of a fluid 
resulting from pressure applied to its surface, neglecting the effect of 
gravity. We investigate a number of self-similar solutions. 

When a blast occurs above the surface of a fluid (Fig. 1). then after 
a certain time the shock wave reaches the fluid and interacts with it. 
To determine the motion of the fluid and the gas, it is necessary to 
solve the problem simultaneously in both domains. However, considering 
the ratio of the densities of the two media, we may, as a first approxi- 
mation. assume that. displacements of the fluid do not influence the 
motion of the gas, which we suppose known. Such a formulation brings us 
to the problem of determining the motion of a fluid due to a pressure 
applied to its surface which varies according to a known law. The 
analogously-formulated linear problem for a compressible fluid is con- 
sidered in the paper [l I but the author restricts himself to pressure 
fields. We suppose the fluid incompressible. This assumption is justified 
in the case of air and water for pressures resulting from shock waves and 

nof exceeding 22 kg/cm. 

1. The two-dimensional problem. We first consider the two- 

dimensional problem. In view of the fact that the motion starts from a 

state of equilibrium there exists a velocity potential $ which satisfies 

the equation 

in the domain of flow and the boundary condition : 

~(2, 0; t) = po(z, t) on the x-axis 

(1.1) 

(1.2) 

&q/lh=O on the solid boundaries (1.3) 
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Here n is the direction of the normal to the solid boundary. If we 

use the Cauchy integral and ignore second-order terms and gravity, then 

condition (1.2) can be represented in the form 

ao - = po(z, t) on the x-axis 
at (1.4) 

We restrict ourselves to the consideration of three cases: a) 'lhe 

pressure due to the shock wave is constant; b) 'Ihe pressure due to the 

shock wave is an arbitrary function of x/t; and c) 'Ihe case of a cylind- 

rical blast on the surface of the water. 

a) Let a shock wave perpendicular to the wall CO travel along that 

wall with velocity V (Fig. 2). At 0 the shock wave encounters the free 

surface of a fluid of density p1 and moves along that surface so that 

the point A travels in the direction of the positive x-axis with velo- 

city V csc a. ch the segment AB the pressure may be assumed to be zero. 

On OA the pressure is determined from the solution of the gasdynamical 

problem which is supposed known [2,3 1. The problem under consideration 
has self-similar solutions since the flow depends only on the dimension- 

less combinations c = x/Vt, q = y/Vt and the angles a and 8. 

In dimensionless coordinates the relations (1.11, (1.3) and (1.4) 

take the form 

If we 

then the 

go over to complex variables by putting w = CD + iY, z = C$ + iq, 

boundary conditions (1.6) become 

aa, -_== 
aq 

0 on the solid boundary (l.i) 
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He (w - Cd?.@ / dc) = a, (61) for 0 < ;I < 1 f: = =f) f1.S) 
Rc(w-- Cdw/dC) = 0 for 1 < il< 30 (iI -i=) 

We introduce a new analytic function W - w - [dap /d(. For this func- 
tion the boundary conditions (1.6) t&e the form 

Rt? W = CL~ (c,) for 0 < cl < I, Rf? W = 0 for 1< :I < 03 (1.9) 

Finally we introduce the variable r t 5’ which varies in the lower- 
right quadrant where k = n/2/3. I.& R = W,(r 1. Using the reflection 
principle we continue the function W,G 1 into the lower-left quadrant. 
As a result of symnetry relative to the ql-axis, condition (1.7) is auto- 
matically satisfied. Qk can now determine II, frem Schwarz’s forstula 

1 

w’,= --A \ a&+- 
I--_; 

(1.10) 
-1 

Since in our case a1 = const, W has the 
form 

To find the function &/df = t “C- it + iv), where u and tr are the 
horizontal and vertical velocity cmponents respectively, we must inte- 
grate the equation 

After integration ‘IIEf get 

(1.12) 

For k = 1, this integral becomes 

&I 
z 

=-- ,4 In& 
k- 

If k is an integer greater than unity we can get the folltig general 
formula: 

flU “a Ii 
-z-“-- _I$( -I)‘; ill (I -;- :) - lll(1 - ;I] - (1.14) 

h!--1 
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where C, are integration constants to be determined from the condition of 
equilibrixsn at 00. Fork=2 andk= 3weget 

CllC 

--==----a & 
a 1+4+2tan-‘t--i:+4 

( 
for k = 2 (1.15) 

du: a 
v==--xi 2 

dr. I Lln (1--Cfe~,(ltc+f2) + 
(1 - P)* 

+ 2/3-(arc tg 2+ - tan-” F) + xi] for k = 3 (l.lG) 

We now compute the velocity at the origin. Equations (1.131, (1.151, 
and (1.16) imply 

(u -i_ iz& = UE ( 1- i Q$) =aa(1-iig?) (1.17) 

‘Lexus, the velocity at the origin is directed along the solid boundary. 
From (1.131, (1.15) and (1.16) we see that the horizontal velocity u is 
equal to ac in the high-pressure region and to zero in the region of 
zero pressure. lhe graphs of the dependence of the vertical velocity 
u1 = a - ’ Im da/d{ on [1 for k = 1, 2, 3 are sh<nm in Fig. 3. 
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FIG. 3. 

lhe singularities at the origin for k = 1 and at 6 = 1 for all values 
of k reflect the shortcomings of the linear theory, 

We compute the displacement S, of the particles of the fluid 

i 

81 = v s (u f ir) tft (1.18) 
0 

If we express u and v in tern of 5 and caqute (1.18) we obtain the 
particle-displacement field for the fluid. We carry out the investigation 
only for points on the surface of the fluid. Clearly, the horizontal 
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displacement is equal to acVt in the region of high pressure and equal 
to zero in the region of zero pressure. 

We consider the vertical displacement S*. Integrating (1.18) and 
introducing the dimensionless distance S = Sr/a~ Vt we get 

The graphs of th e f unctions s(c,) corresponding to these formulas are 
shown in Fig. 4. W e note that for k > 1 the displacement field has no 
singularities, 

b) When computing the velocity field we assumed that the pressure be- 
hind the shock wave was constant. 'lhis assumption is valid for large and 
small incidence angles a (cf. Fig. a), i.e. for a = 0 and u J n/2. 
For intermediate values of a this is only approximately correct (thus, 
it is shown in t]41 that when the incidence angle of the shock wave is 
small, the increased pressure is concentrated in a narrow region adjain- 
ing the shock wave). For a more accurate solution the function al(cl) 

FIG. 4. FIG. 5. 

which gives the distribution of pressure on the surface of the liquid 
must be determined e~ri~ntally, or it can be assumed to be known from 
the solution of the gasdynamical problem of the reflection of a shock 

wave from an arbitrary 
and we represent it as 

angle. We assume the function al(C1) to he known 
a power series in (I 

;, 
n, (iIf == 2 &n (1.21) 

71=* 

~stituting (1.21) in fl.10) we get 
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Substituting (1.22) in (1.11) and differentiating 
sign we find 

dll. #l$ ' 
-Z-=---i 
d, s 

(1.22) 

under the integral 

(1.23) 

The constant of integration is determined from the condition of equi- 
librium at infinity. For arbitrary integer values of k the inner integral 
leads to elementary functions. Thus, computation of the velocity field 
for an arbitrary function al(&) reduces to quadratures. 

By way of example we consider one of the simplest cases of non-uniform 
distribution of pressure a,([,) = az[12, a2 = const. Here, the greater 
part of the pressure is concentrated in the vicinity of the shock wave. 
Computing the integrals we get 

for li= 1 (1.24) 

for k = 2 (1.23) 

Figure 5 give s the distributions of vertical (solid lines) and hori- 
zontal (broken lines) velocities computed from (1.24) and, for comparison, 
the corresponding curves in the case of uniform distribution of pressure. 

Substituting (1.24) and (1.25) in (1.18) we get the vertical displace- 
ment of the surface 

S= i(ln~+r,1*1~~-_‘ta~-lC,-~(:--.‘)-_ ln*$) 

0 
for Ii == 2 (1.2i) 

‘Ihe graphs of these functions appear in Fig. 4. Using Formulas (1.24) 
and (1.25) it is easy to compute the horizontal displacement S’. S’ is 
the same in both cases and has the value 

s’ = S,’ / Vt = fziE (1 - 2:,) for 0 < Cl < 1, S'=O for ~<C,<W 

c) We assume that a cylindrical region of pressure is propagated out- 
ward from the point 0. Ihe pressure on the surface of the fluid is 
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supposed to vary in the mauner corresponding to a strong cylindrical 
blast with energy (l/2) B. In 

meters yS PI* ps8 E, x, Y, t, 
the gas, pr is the density of 
Accordingtodimsnsiou theory 
parameters 

this case the flow depends on the para- 
where y is the ratio of specific heats for 
the fluid and pz is the density of the gas. 
the flow will depend on the dimensionless 

We shall restrict ourselves to the most iqmtaut case of a fluid of 
infinite depth. &uation (1.5) holds in the 1-r half-plme occupied by 
the fluid with the velocity potential d, given by 

E 

In dismsiouless coordinates the boundary 
face takes the form 

condition (1.4) on the sur- 

(1.28) 

where h(e) is a knowu function ES 1 which describes the distribution of 
pressure in dimensionless coordinates in case of a strong blast and p2 
is the pressure behind a strong shock wave. If we introduce the coqlex 
variablesu=@+i41r, z- e+iu, theu condition (1.28) becomes 

Re(z$)= -cl(E) for [Ej<l, Re(Zg) = 0 for f$/> 1 (I .q 

'lhus, to determine the fuuction zdw/dz it is necessary to solve the 
Dirichlet problem. Using the Schwarz integral we find 

1 
dw 1 
dz=s;iz (1.30) 

of 
in 

This formla describes the velocity field. To get an approximate idea 
this field we take a,(t) = u, a constant, which *lies an error only 
the vicinity of the shock wave. Ihen (l.30) yields 

Using the approximate fomla (1.31) it is 
easy to coaqmte the displacement field. The 
result is 

FIO. 6. 

4s = -- = - i(i$ in s-2) =%Pl 

~,@,t', : 
(1.32) 
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The graph of the vertical displacements of the particles of the sur- 

face of the fluid based on this formula is given in Fig. 6. For hori- 
zontal displacements we get 

1 - E? 
S’=n,- for I f I < 1, 5’= 0 for 

We now compute the energy E, acquired by the fluid 
blast. Using the approximate formula (1.31) we obtain 

ICI>1 

as a result of the 

(1.33) 

Ihus, the magnitude of the energy imparted to the fluid is proportion- 

al to the ratio of the densities of the two media. 

2. Ihe three-dimensional problem. Without changing our assump- 

tions we consider the problem of motion of a fluid which fills the lower 

half-space under pressure due to a point blast in the gas. In the lower 

half-space the velocity potential satisfies the Laplace equation. Assm- 

ing axial symaetry the condition on the surface expressed in polar co- 
ordinates takes the form 

a9 --= 
at PI (P9 4 for Z = 0 (2.1) 

where pl@a, t) is a known fuuction. Let Q@, z; t) = d+/dt. Obviously, 
this function must also satisfy Laplace’s equation. Consider the zero 

order Ha&e1 transform ipo of Q 

UY(5, Z; t) = j r@((r, z; l)J,(Er) dr 
IJ 

Multiplying both sides of the Laplace equation by rJO(&) and inte- 

grating with respect to r from 0 to OD we arrive at the well-kuonn con- 

clusion that Q” satisfies the equation 

A5!!$42@0 =1() 

whose solution suitable in cases when 9+ 0 as z + - m has the form 

a0 = A (5, t) $2 

hkltiplying (2.1) by rJ,,([r), integrating with respect to r and putting 
z = 0 in the latter relation we find A@, t) and then using the inversion 
formula for the Hankel transform we get 

(2.2) 

Formula (2.2) gives the pressure field in a fluid due to au arbitrary 
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surface pressure p1 (p, t). We now consider special cases. 

a) Let the function p1 (p, t) have the form 

PI = a1 for p < lit, p1 == 0 for p > Vt (al, V = const) 

‘Ihis corresponds to a circular region of constant pressure which is 
propagated in all directions with constant velocity. In this formulation 
the problem is one with self-similar solutions, all flow parameters de- 
pending on the dimensionless quantities 

In dimensionless variables the velocity 

z1= fi 

potential takes the form 

‘p tp. 2; q = fJ2@ (p1, 21) 

The dimensionless form of Equation (2.2) is 

We now expand Qb(p,, z,) in powers of zr but restrict ourselves to the 
first two terms 

@ fP1, 211 = @, (PI) -I- 21 @l (Plf -t * . * (2.4) 

Substituting (2.4) in (2.31, expanding the right side of (2.3) in a 
series of powers of zl, and equating coefficients, we obtain the follow- 
ing expressions for the terms of order zero and one: 

(2.5) 

From (2.5) we find the horizontal velocity of the particles of the 
surface of the fluid 

dQlo 
u=dpl=a 

for p1 < 1, u=o for p1> 1 (2.7) 

From (2.6) we find the corresponding vertical velocity 

‘Ihe arbitrary constant is chosen using the condition of equilibriws 
at infinity. The graph of vertical velocity based on this formula is 
given in Fig. ? (the dotted curve). We now compute the displacasmsmt of 
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the points on the surface of the fluid. We denote by 5’ the dimensionless 

distance S = S,n’/ Vt 2 a, where S, is the dimensional quantity. Further, 

we denote by S1snd S* the horizontal and vertical displacements. Using 
(2.8) and (1.18) we get for the horizontal displacement 

S’=a for p1 < I, S’= 0 for p1> 1 

‘lhe graph of vertical displacement based on (2.81 and (1.18) appears 

as the dotted curve in Fig. 8. 

b) We now assume that the distribution of pressure po(p, t 1 is such 

as would result from a strong blast at the point 0 on the surface of the 

fluid with E/2 the amOunt of energy imparted to the gas. In this formula- 

tion the problem is likewise self-similar with the flow depending on the 
dimensionless combinations 

P 2 

PI z (~~p2jbt% ’ %=: (~~pz~/~~/6 ’ 

‘Ihe velocity potential c$ is expressed in terms 

dimensionless function in the following manner: 

7* 
HfE 
Pl 

of the corresponding 

The dimensionless form of EQuation (2.2 ) becomes in this case 

a, 1 

EJ0 KPd e F;zl 
s 

rJo (Er) h (r) drdE 

0 

8 PZ a=--- 
5 l-l + 1) Pl 

cw 

Here h(r) is a known function which gives the distribution of pressure 

for a strong blast I5 I. Its graph appears in Fig. 9. When h(r) is a 
complicated function, the inner integral is not expressed in terms of 

elementary functions, 

As can be seen from Fig. 9, h(r) can 

be well approximated by putting h(r) = 

b = 0.366. lhen (2.9) becomes 

( am aat 
*+2Pl3p-z17jg = 

) 

co 

= ab s e’*‘Jo EPI) JIG) dS (Z.l(J) 
0 
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As in the previous example we obtain a differential equation for 4 
and aI by substituting (2.4) in (2.101, expanding the integral in a 
series and equating the coefficients of like powers of z,. Solving these 
differential-equat&s we get for the horizontal velocity 
on the surface of the fluid 

ab 
(‘Z--- 

.'p;/l 
for p1< I, 24 = 0 for p1> 1 

and for the vertical velocity u1 = QIn2/crb. 

u = d@,&, 

F1 

* (3-PTP [5 
!’ 1 -pa 1 i_ pa 

2‘1 = - 
(1 + PT 

eossydp+ \ m-tin p -dp+L 
I 

(2.11) 

0 0 

p% 

The arbitrary constant C is determined from the condition of finite 
energy imparted to the fluid. We find 
that C = 0. 'Ihe graph of the vertical 
velocity u1 appears as the solid curve 
in Fig. 7. 

-al 
We introduce the dimensionless dis- 

tance -at 

s = f s1 _; c ) --I’+, FIG. 8. 

'lhe solid curve in Fig. 8 is the graph of the dimensionless vertical 
displacement obtained by nuaerical integration using (2.11) and (1.18). 

'lhe graph in Fig. 9 shows that the line h(r) = b deviates strongly 
from the curve in the vicinity of the shock wave where on a small inter- 
val the pressure takes on large values. One cau take this fact into 

u 9, 
10 

FIG. 9. 

consideration and 
is, we can assuae 

so make the theory just developed more precise; that 
that the function h,(r) = h(r) - b is of the form 

1 

hl (r) = cE (r - I), c = ’ [h(r) - b] dr I 
0 
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where 6(r - 1) is the Dirac delta function. 

Let @ be the velocity potential of the required motion. In view of 
the linearity of the problem 

@=q)+@~ 

where Qa stands for the solution of the flow problem with uuifoxm pressure 
end ‘$ for the velocity potential of a flow due to a ringlike pressure 
zone. Since $, was computed earlier, it remains to determine $j. 

TO this end we substitute h,(r) in (2.9) and obtain 

(2.92) 

In au analogous manuer we obtain the following expressions for the 
horizontal and vertical velocities: 

U& = 0 

Using Formulas (2.13) and (1,181 we obtain the corresponding vertical 
displacement. Its graph (multiplied by a factor of b/c) appears as the 
dotted curve in Fig. 8. 

In case of a point blast it is Possible to compute the energy E1 im- 
parted to the fluid. Using (2.111 we obtain, after comPuti.ng the integral, 
the following formula 

In conclusion I wish to thank N.N. Moiseev for valuable advice and 
interest in this paper* 
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